United States Patent 3,138,743
MINIATURIZED ELECTRONIC CIRCUITS
Jack S. Kilby, Dallas, Tex., assignor to Texas Instruments Incorporated, Dallas, Tex., a corporation of Delaware
Filed Feb. 6, 1959, Ser. No. 791,602 25 Claims. (Cl. 317–101)
This invention relates to miniature electronic circuits, and more particularly to unique integrated electronic circuits fabricated from semiconductor material.
Many methods and techniques for miniaturizing electronic circuits have been proposed in the past. At first, most of the effort was spent upon reducing the size of the components and packing them more closely together. Work directed toward reducing component size is still going on but has nearly reached a limit. Other efforts have been made to reduce the size of electronic circuits such as by eliminating the protective coverings from components, by using more or less conventional techniques to form components on a single substrate, and by providing the components with a uniform size and shape to permit closer spacings in the circuit packaging therefor.
All of these methods and techniques require a very large number and variety of operations in fabricating a complete circuit. For example, of all circuit components, resistors are usually considered the most simple to form, but when adapted for miniaturization by conventional techniques, fabrication requires at least the following steps:
(a) Formation of the substrate.
(b) Preparation of the substrate.
(c) Application of terminations.
(d) Preparation of resistor material.
(e) Application of the resistor material.
(f) Heat treatment of the resistor material.
(g) Protection or stabilization of the resistor.
Capacitors, transistors, and diodes when adapted for miniaturization each require at least as many steps in the fabrication thereof. Unfortunately, many of the steps required are not compatible. A treatment that is desirable for the protection of a resistor may damage another element, such as a capacitor or transistor, and as the size of the complete circuit is reduced, such conflicting treatments, or interactions, become of increasing importance. Interactions may be minimized by forming the components separately and then assembling them into a complete package, but the very act of assembly may cause damage to the more sensitive components.
Because of the large number of operations required, control over miniaturized circuit fabrication becomes very difficult. To illustrate, many raw materials must be evaluated and controlled even though they may not be well understood. Further, many testing operations are required and, even though a high yield may be obtained for each operation, so many operations are required that the over-all yield is often quite low. In service, the reliability of a circuit produced by methods of such complexity may also be quite low due to the tremendous number of controls required. Additionally, the separate formation of individual components requires individual terminations for each component. These terminations may eventually become as small as a dot of conductive paint. However, they still account for a large fraction of the usable area or volume of the circuit and may become an additional cause of circuit failure or rejection due to misalignment.
In contrast to the approaches to miniaturization that have been made in the past, the present invention has resulted from a new and totally different concept for miniaturization. Radically departing from the teachings of the art, it is proposed by the invention that miniaturization can best be attained by use of as few materials and operations as possible. In accordance with the principles of the invention, the ultimate in circuit miniaturization is attained using only one material for all circuit elements and a limited number of compatible process steps for the production thereof.
The above is accomplished by the present invention by utilizing a body of semiconductor material exhibiting one type of conductivity, either n-type or p-type, and having formed therein a diffused region or regions of appropriate conductivity type to form a p-n junction between such region or regions and the semiconductor body or, as the case may be, between diffused regions. According to the principles of this invention, all components of an entire electronic circuit are fabricated within the body so characterized by adapting the novel techniques to be described in detail hereinafter. It is to be noted that all components of the circuit are integrated into the body of semiconductor material and constitute portions thereof.
In a more specific conception of the invention, all components of an electronic circuit are formed in or near one surface of a relatively thin semiconductor wafer characterized by a diffused p-n junction or junctions. Of importance to this invention is the concept of shaping. This shaping concept makes it possible in a circuit to obtain the necessary isolation between components and to define the components or, stated differently, to limit the area which is utilized for a given component. Shaping may be accomplished in a given circuit in one or more of several different ways. These various ways include actual removal of portions of the semiconductor material, specialized configurations of the semiconductor material such as long and narrow, L-shaped, U-shaped, etc., selective conversion of intrinsic semiconductor material by diffusion of impurities thereinto to provide low resistivity paths for current flow, and selective conversion of semiconductor material of one conductivity type to conductivity of the opposite type wherein the p-n junction thereby formed acts as a barrier to current flow. In any event, the effect of shaping is to direct and/or confine paths for current flow thus permitting the fabrication of circuits which could not otherwise be obtained in a single wafer of semiconductor material. As a result, the final circuit is arranged in essentially planar form. It is possible to shape the wafer during processing and to produce by diffusion the various circuit elements in a desired and proper relationship. Certain of the resistor and capacitor components described herein have utility and novelty in and of themselves although they are completely adaptable to and perhaps find their greatest utility as integral parts of the semiconductor electronic circuit hereof.
It is, therefore, a principal object of this invention to provide a novel miniaturized electronic circuit fabricated from a body of semiconductor material containing a diffused p-n junction wherein all components of the electronic circuit are completely integrated into the body of semiconductor material.
It is another principal object of this invention to produce desired circuits by appropriately shaping a wafer of semiconductor material to obtain the necessary isolation between components thereof and to define the areas utilized by such components.
It is a further object of this invention to provide a unique miniaturized electronic circuit fabricated as described whereby the resulting electronic circuit will be substantially smaller, more compact, and simpler than circuit packages heretofore developed using known techniques.
It is a still further object of this invention to provide novel miniaturized electronic circuits fabricated as described above which involve less processing than techniques heretofore used for this purpose.
It is a primary object of the invention to provide a miniaturized electronic circuit wherein the active and passive circuit components are integrated within a body of semiconductor material, the junctions of such components being near and/or extending to one face of the body, with components being spaced or electrically separated from one another as necessary in the circuit. These features permit a versatility in design of integrated circuits not heretofore available.